Equilibrium Study of Biphenyl-2-ol by Infrared Spectroscopy

By Toshio Kinugasa and Michiko Nakamura, Department of Chemistry, Faculty of Science, Kobe University, Rokkodai, Nada, Kobe, Japan

Shinichi Ueji,* Institute of Chemistry, College of General Education, Kobe University, Tsurukabuto, Nada, Kobe, Japan

Biphenyl-2-ol is composed of *cis*- and *trans*-isomers in CCl_4 solution. The percentage of *trans*-isomer is estimated by comparison of i.r. intensities for solutions in basic solvents; the proportion of *cis*-isomer is obtained by comparison with 2,6-diphenylphenol.

It is now well known ¹ that in CCl_4 solution biphenyl-2-ol (1) is composed of *cis*- and *trans*-isomers, corresponding

to an $OH \cdots \pi$ interaction and a free hydroxy-group, respectively. However, the proportion of the two

isomers has not been reported. In general, the measured cis: trans integrated intensity ratio for the OH stretching vibration does not give the relative percentage of the two isomers. In this paper, estimations of the percentage of cis- and trans-isomers were carried out by two different i.r. spectroscopic methods. Estimation of the transpercentage was based on the effect of basic solvents which produced only the trans-form of biphenylols (1)—(4). The cis-percentage was estimated by application of

¹ M. Oki and H. Iwamura, Bull. Chem. Soc. Japan, 1961, 34, 1395.

the Hammett equation to 4-substituted 2,6-diphenylphenols in which only the *cis*-form is possible.

RESULTS AND DISCUSSION

Application of Solvent Effects to the Equilibrium Study .--- The integrated intensities of the hydroxygroup frequency of the biphenylols (1)-(4) were measured for CCl₄ solutions and for basic solvents as proton acceptors (Table 1). In the basic solvents, the

TABLE	1
-------	---

Integrated intensities and intensity ratios of biphenylols in CCl₄ and basic solvents

	Integrated intensity 10 ⁻⁴ A/l mol ⁻¹ cm ⁻² Solvents							
Com-	CCl ₄				0 11 0			
pounds	trans	cis	$CH_3C=$	N	THF	C ₄ H ₄ O		13COCH
(1)	0.18	1.25	6.83		7.16	7.22	2	7.57
(2)	1.37		7.90		8.77	8.32	2	8.90
(3)	1.12		7.24		7.52	7.79)	7.71
(4)	2.29		14.58		14.98	15.84	Ł	15.74
		Int	egrated in	nte	nsity r	atio		
Com-	Solvents							
pair	CH_CEN	Γ	THF	C,	H4O2 "	CH30	COCH ₃	Average
$A(\bar{1})/A(2)$	0.86		0.82		0.87	0.8	85	0.85
A(1)/A(3)	0.94		0.95		0.93	0.9	98	0.95
A(1)/A(4)	0.47		0.48		0.46	0.4	18	0.47
			¢ Di	ov:	an			

hydroxy-group of the biphenylols is considered to fully interact with the lone pair electrons of the solvent. Therefore, as reported by \overline{O} ki *et al.*,¹ biphenyl-2-ol is forced into the *trans*-form,^{2,*} because the OH $\cdots \pi$ interaction of the cis-form is not significant.

On the basis of the trend reported by Cole *et al.*,³ it was found from Table 1 that the integrated intensity ratios for each compound remained constant regardless of the change of solvent. The constancy of integrated

* This compound exhibits only a single broad band attributed to intermolecular hydrogen bonding.

² T. Kinugasa, unpublished data.

³ A. R. H. Cole, L. H. Little, and A. J. Michell, Spectrochim. Acta, 1965, 21, 1169.

⁴ L. J. Bellamy, G. Eglinton, and J. F. Morman, J. Chem. Soc., 1961, 4762. ⁵ O. Nillius and H. Kriegsmann, Spectrochim. Acta, 1970, 26A,

121.

intensity ratios for other compounds having a hydroxygroup was tested using data reported in the literature 4,5

$$[A(1)/A(n)] = K$$
 (constant), $n = 2-4$ (1)

(Table 2), thus establishing the utility of the method. From this, a calculated integrated intensity due to the trans-only form of biphenyl-2-ol in CCl_4 , $A'(1)_t$, can be

TABLE 2 Integrated intensities and intensity ratios of silanols^a Integrated intensity $(10^{-4} A/l \text{ mol}^{-1} \text{ cm}^{-2})$

	Solvent					
Compounds	Снсі,	CCl	C ₆ H ₁₂ b	CS,		
Ph.MeSiOH (I)	1.72	1.28	1.09	1.51		
PhMe.SiOH (II)	1.59	1.17	1.03	1.30		
Me,SiOH (III)	1.37	1.00	0.97	1.07		
Et,SiOH (IV)	1.31	0.98	0.83	1.03		
Pr ⁿ ₂ SiOH (V)	1.28	0.96	0.81	0.99		
Bu ⁿ ₃ SiOH (VI)	1.11	0.93	0.79	0.97		
	Integrated in	ntensity ra	tios			
	÷	Solvent				
Compound	CHCl ₃	CCl	C ₆ H ₁₂ ^b	CS,		
$A(\mathbf{I})\hat{I}A(\mathbf{II})$	1.08	1.09	1.06	$1.1\bar{6}$		
A(I)/A(III)	1.26	1.28	1.24	1.41		

$A(\mathbf{I})/A(\mathbf{II})$	1.00	1.00	1.00	1.10
$A(\mathbf{I})/A(\mathbf{III})$	1.26	1.28	1.24	1.41
	1.31	1.31	1.31	1.47
$A(\mathbf{I})/A(\mathbf{V})$	1.34	1.33	1.35	1.53
$A(\mathbf{I})/A(\mathbf{V}\mathbf{I})$	1.55	1.38	1.38	1.56

^a Data are taken from ref. 5. ^b Cyclohexane.

estimated by the interpolation of the K value in equation (1) into (2), assuming the constancy of the integrated intensity ratios with the change from basic solvent to CCl₄. Thus, equation (3) affords the average percentage of trans-isomer.

$$[A(n)]_{\text{OCl}_{\bullet}}K = A'(1)_t \qquad (2)$$

% trans = 100 [A(1)_t/A'(1)_t] = ca. 16-17% (3)

Application of Hammett Treatment to the Equilibrium Study.—Since 2,6-diphenylphenol (7) possesses the cisonly form in CCl_4 ,⁶ an estimate of the integrated intensity due to the hydroxy-group of the cis-only form of biphenyl-2-ol can be obtained from the measured intensity for 2,6-diphenylphenol by applying a correction for the polar effect of an ortho-phenyl substituent. Therefore, the $\sigma_0(ortho)$ value for the phenyl substituent was estimated by the use of the Hammett equation.

The values for the OH stretching frequencies of 3- and 4-substituted phenols ⁷ were satisfactorily correlated by the Yukawa-Tsuno equation 8 (4) where (X) is the sub-

$$vOH_{(X)} - vOH_{(H)} = -13.97\sigma - 10.62 (\sigma^{-} - \sigma) + 0.02 \quad (4)$$
(s 0.81 cm⁻¹, r 0.993)

stituent and the σ constants are taken from ref. 9. It is

⁶ M. Öki, H. Hosoya, and H. Iwamura, Bull. Chem. Soc.

Japan, 1961, 34, 1305 ya, and 14, 14 and 14, Juni, Ontonio Ostori, ⁷ L. L. Ingraham, J. Corse, G. F. Bailey, and F. Stitt, J. Amer. Chem. Soc., 1952, 74, 2297. ⁸ Y. Yukawa and Y. Tsuno, Bull. Chem. Soc. Japan, 1959, 32,

971. 9 J. A. Gordon and R. A. Ford, 'The Chemist's Companion. 7 Techniques, and References,' A Handbook of Practical Data, Techniques, and References, Wiley, New York, 1972, pp. 152-153.

reported ¹ that the free hydroxy stretching frequencies for 2-phenyl-4(or-5)-substituted phenols also show a good Yukana-Tsuno correlation [equation (5)]. Equ-

$$\nu OH_{(X)} - \nu OH_{(H)} = -13.62\sigma - 15.45 (\sigma^{-} - \sigma) + 0.356 (5) (s \ 1.40 \text{ cm}^{-1}, r \ 0.996)$$

ation (5) has ρ and r values sufficiently close to those of equation (4) to suggest that the *o*-phenyl substituent has an effectively constant effect. This justifies the interpolation of vOH (free) for biphenyl-2-ol into equation (4) in order to estimate the σ_0 value for the *o*-phenyl substituent.

$$\begin{array}{r} 3\ 607.4 - 3\ 610.1 = \\ -13.97\sigma - 10.62\ (\sigma^{-} - \sigma) + 0.02 \quad (6) \end{array}$$

On the assumption that the $(\sigma^- - \sigma)$ term is small, the σ_0 value for an *o*-phenyl substituent can be estimated by use of equation (6) $(\sigma_0 \ ca. \ 0.2)$. Furthermore, a Yukawa-Tsuno equation when applied to the integrated intensities (Table 3) for 4-substituted 2,6-diphenyl-

TABLE 3

Integrated in	ntensities	of 4-su	bstituted	l 2,6-dip	henylph	enols
	(5	5)	(6)	(7)	(8)	(9)
$10^{-4} A / \text{mol}^{-1}$	cm ⁻² 2.3	28 2	2.08	1.60	1.46	1.30

phenols gives equation (7) whence the integrated inten-

$$A_{\rm (X)} - A_{\rm (H)} = 0.47\sigma + 0.667 \ (\sigma^- - \sigma) + 0.002 \ (7)$$

(s 0.015A × 10⁻⁴ mol⁻¹ cm⁻², r 1.000)

sity, A', for one o-phenyl group is given by equation (8). $A' = 0.47 \times 0.2 = 0.094$ (8)

From this, it is possible to obtain the percentage of the

¹⁰ C. Häussermann and H. Teichmann, Ber., 1894, 27, 2108.
 ¹¹ S. Ueji, N. Ueda, and T. Kinugasa, J.C.S. Perkin II, 1976, 178.

cis-isomer of biphenyl-2-ol according to equation (9).

$$2\%$$
 cis = $A(1) \times 100/A(7) - A' = ca. 83\%$ (9)

Thus, the percentage of *cis*-isomer was estimated from the Hammett treatment to be *ca*. 80-85%.

We conclude that the results of two different methods lead to satisfactory agreement, *i.e.*, the *trans*-isomer is present in *ca.* 16—17% with the *cis*-isomer in *ca.* 80—85% for biphenyl-2-ol in CCl₄.

EXPERIMENTAL

Compounds (1)—(3) were commercial samples, recrystallized before use. Compound (4) was prepared by a literature method.¹⁰ Compounds (5) and (7)—(9) were prepared earlier.¹¹

4-Hydroxy-3,5-diphenylbenzonitrile (6).—Diazotization of 4-amino-2,6-diphenylphenol (3 g)¹² in glacial acetic acid (40 ml) at 0 to -5° afforded 4-diazo-2,6-diphenylcyclohexa-2,5-dienone (2.4 g), m.p. 130° (decomp.) (from acetone). To a solution of the diazo-ketone (2 g) in acetic acid (40 ml) and concentrated hydrochloric acid (1.8 ml) was added potassium iodide (2.6 g) at room temperature. Work-up in the usual way gave a viscous oil which was purified by chromatography on silica gel to give 4-iodo-2,6-diphenylphenol (1.8 g). The iodo-compound (1 g) was treated with copper(I) cyanide-pyridine [with copper(II) sulphate and *p*-cyanotoluene as catalyst] under reflux for 9 h. The usual work-up afforded the *nitrile* (6) (0.5 g), m.p. 159.5— 160.5° (from methanol) (Found: C, 84.05; H, 4.9; N, 5.25. C₁₂H₁₃ON requires C, 84.1; H, 4.85; N, 5.15%).

I.r. spectra were measured in the 3 μ m region with a JASCO 402G grating spectrometer at a spectral slit width of 2 cm⁻¹ at 29°. Other experimental conditions for recording spectra were as reported previously.¹¹

We thank Dr. H. Yamada of Kobe University for advice.

[5/1833 Received, 23rd September, 1975]

¹² E. Charles, S. Jones, and J. Kenner, *J. Chem. Soc.*, 1931, 1842.